• <menu id="46owc"><menu id="46owc"></menu></menu>
  • <menu id="46owc"><tt id="46owc"></tt></menu><nav id="46owc"><code id="46owc"></code></nav>
    <nav id="46owc"></nav>
  • <xmp id="46owc">
    <menu id="46owc"><strong id="46owc"></strong></menu>
    國家天元數學中部中心幾何分析系列講座(一) | 沈忠民 教授(Indiana University-Purdue University Indianapolis)
    發布時間:2021-07-13 14:37:42

    【講座說明】

    舉辦日期:2021年07月22/24/27/29/31日 ;08月03日 09:00-10:00

    舉辦地點:線上課程(騰訊會議)

    會議ID: 327 7860 8823      點擊此處進入會議

    授課講師:Prof. Zhongmin Shen (Indiana University-Purdue University Indianapolis)

    主辦單位:國家天元數學中部中心、武漢大學數學與統計學院

    【ABSTRACT】

        Riemannian metrics are regular metrics with quadratic restriction. Riemannian geometry has been studied by many mathematicians around the world. However it is necessary to study manifolds with a non-quadratic metric. In some cases, volume form is an independent geometric structure. So we should study metrics and measures together . In this series of talks, the following topics will be covered.

    1. Finsler spaces, Hypersurfaces in a Finsler space. Gradient of Functions, Co-Area Formula

    2. Isoperimetric Inequalities

    3. Geodesics, Geodesic Fields, Riemann curvature, Ricci curvature and S-curvature

    4. Finsler metrics of constant flag curvature and constant Ricci curvature

    5. Variation of Length, T-curvature, Jacobi Fields

    6. Basic Comparison Theorems

    7. Hessian and Laplacian, Normal and Mean Curvature

    8. Estimates under Curvature Bounds

    9. Bishop-Gromov Volume Comparison Theorem

    10.Applications of Bishop-Gromov comparison theorem

    11.Morse theory and Loop Space

    12.Weighted Ricci Curvature

    13.Estimates under Weighted Ricci Curvature Bounds

    【報名流程及聯系人】

    1、點擊此處提交報名申請

    2、報名截止日期為2021年07月20日

    聯系人:楊老師    電話:16602740903    Email:  tmcc@whu.edu.cn




    Copyright 2019 ? 天元數學中部中心 National Tianyuan Mathematics Central Center

    中文字字幕在线乱码
  • <menu id="46owc"><menu id="46owc"></menu></menu>
  • <menu id="46owc"><tt id="46owc"></tt></menu><nav id="46owc"><code id="46owc"></code></nav>
    <nav id="46owc"></nav>
  • <xmp id="46owc">
    <menu id="46owc"><strong id="46owc"></strong></menu>